Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Genet ; 55(4): 568-580, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36959362

RESUMO

Telomere length in humans is associated with lifespan and severe diseases, yet the genetic determinants of telomere length remain incompletely defined. Here we performed genome-wide CRISPR-Cas9 functional telomere length screening and identified thymidine (dT) nucleotide metabolism as a limiting factor in human telomere maintenance. Targeted genetic disruption using CRISPR-Cas9 revealed multiple telomere length control points across the thymidine nucleotide metabolism pathway: decreasing dT nucleotide salvage via deletion of the gene encoding nuclear thymidine kinase (TK1) or de novo production by knockout of the thymidylate synthase gene (TYMS) decreased telomere length, whereas inactivation of the deoxynucleoside triphosphohydrolase-encoding gene SAMHD1 lengthened telomeres. Remarkably, supplementation with dT alone drove robust telomere elongation by telomerase in cells, and thymidine triphosphate stimulated telomerase activity in a substrate-independent manner in vitro. In induced pluripotent stem cells derived from patients with genetic telomere biology disorders, dT supplementation or inhibition of SAMHD1 promoted telomere restoration. Our results demonstrate a critical role of thymidine metabolism in controlling human telomerase and telomere length, which may be therapeutically actionable in patients with fatal degenerative diseases.


Assuntos
Telomerase , Humanos , Telomerase/genética , Proteína 1 com Domínio SAM e Domínio HD/genética , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Nucleotídeos/genética , Homeostase do Telômero/genética , Timidina , Telômero/genética
3.
Blood Adv ; 5(13): 2673-2686, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34170284

RESUMO

Germline heterozygous mutations in GATA2 are associated with a syndrome characterized by cytopenias, atypical infections, and increased risk of hematologic malignancies. Here, we generated a zebrafish mutant of gata2b that recapitulated the myelomonocytopenia and B-cell lymphopenia of GATA2 deficiency syndrome. Using single-cell assay for transposase accessible chromatin with sequencing of marrow cells, we showed that loss of gata2b led to contrasting alterations in chromosome accessibility in early myeloid and lymphoid progenitors, associated with defects in gene expression. Within the myeloid lineage in gata2b mutant zebrafish, we identified an attenuated myeloid differentiation with reduced transcriptional priming and skewing away from the monocytic program. In contrast, in early lymphoid progenitors, gata2b loss led to accumulation of B-lymphoid transcription factor accessibility coupled with increased expression of the B-cell lineage-specification program. However, gata2b mutant zebrafish had incomplete B-cell lymphopoiesis with loss of lineage-specific transcription factor accessibility in differentiating B cells, in the context of aberrantly reduced oxidative metabolic pathways. Our results establish that transcriptional events in early progenitors driven by Gata2 are required to complete normal differentiation.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação , Deficiência de GATA2 , Animais , Fator de Transcrição GATA2 , Linfopoese , Fatores de Transcrição/genética , Proteínas de Xenopus , Peixe-Zebra
4.
Zebrafish ; 14(4): 379-382, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28557653

RESUMO

The establishment of in vitro cultures of zebrafish cancer cells has expanded the potential of zebrafish as a disease model. However, the lack of effective methods for gene delivery and genetic manipulation has limited the experimental applications of these cultures. To overcome this barrier, we tested and optimized vesicular stomatitis virus glycoprotein (VSV-G) pseudotyped lentiviral and retroviral vector transduction protocols. We show that lentivirus successfully and efficiently transduced zebrafish melanoma cell lines in vitro, allowing antibiotic selection, fluorescence-based sorting, and in vivo allotransplantation. In addition, injection of concentrated lentiviral particles into embryos and tumors established the feasibility of in vivo gene delivery.


Assuntos
Vetores Genéticos/administração & dosagem , Lentivirus/genética , Melanoma/genética , Retroviridae/genética , Transdução Genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Animais , Melanoma/patologia , Glicoproteínas de Membrana/genética , Células Tumorais Cultivadas , Proteínas do Envelope Viral/genética , Peixe-Zebra/crescimento & desenvolvimento
5.
Adv Drug Deliv Rev ; 113: 3-23, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27599979

RESUMO

Until recently, molecular imaging using magnetic resonance (MR) has been limited by the modality's low sensitivity, especially with non-proton nuclei. The advent of hyperpolarized (HP) MR overcomes this limitation by substantially enhancing the signal of certain biologically important probes through a process known as external nuclear polarization, enabling real-time assessment of tissue function and metabolism. The metabolic information obtained by HP MR imaging holds significant promise in the clinic, where it could play a critical role in disease diagnosis and therapeutic monitoring. This review will provide a comprehensive overview of the developments made in the field of hyperpolarized MR, including advancements in polarization techniques and delivery, probe development, pulse sequence optimization, characterization of healthy and diseased tissues, and the steps made towards clinical translation.


Assuntos
Isótopos de Carbono , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Imagem Molecular/métodos , Animais , Humanos , Pesquisa Translacional Biomédica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...